

Colorado Wind Workshop April 8, 2002 Denver, CO

Christine Watson
Energy Engineer, Utah Energy Office

cwatson.ueo@state.ut.us
801-538-4792

Overview

- Utah's Anemometer Loan Program
- How to:
 - Site an Anemometer
 - Install an Anemometer

The Story

- Wind Repeats Itself
- Anemometer Loan Program
 - Over 250 calls
 - Anememometer?...What is it?
 - 50 Applicants
 - 10 anemometers became 15 anemometers

Equipment Configuration

- Review Wind Maps:
 - NREL: www.nrel.gov/wind/database.html
- Obtain Historical Wind Data:
 - Airports, Department of Transportation
- Analyze Topograhpic Maps

Siting: Micro

- Visually observe site vegetation
- Legal Issues
- Building codes and covenants
- Environmental Issues

Siting: Wind Deformation

Siting: Micro

Legal Issues

- City, town, or county ordinances
 - Restricting height or
 - Requiring minimum setbacks
- Conditional use permit vs. Cell tower

Environmental Issues

- Neighbors' concerns
 - Visual impact
 - Noise
- Potential physical obstacles
 - Growing trees
 - Planned Construction
 - Terrain has major impact on wind resource

Utah Anemometer Loan Program

How we Choose our Recipients

- Applicants into Categories
 - Farm/Irrigator
 - Off-grid
 - Business
 - Large Scale
 - Homeowner
- Topographical Maps
- Pictures from applicants
- Application

Installation of Tower

- Tower height matters: wind speed increases exponentially with height.
- Small increases in wind speed result in large increases in power
- Tall towers often needed for clearance above obstacles *(turbulence)*
- May require a variance or a special use permit

Wind Speeds Increase with Height

Installation of Tower

Height or Distance Needed

Installation of Tower

- 20-M Tower ~ 66 feet
 - -Use free standing tower, do not mount on buildings
 - -Winch: powered by car battery
 - -Gin Pole
 - -Anchors: depending on soil type
- Choose areas secure from vandalism or animal damage

How to Collect and Interpret Data

- Establish project objectives
 - -Duation: at least one year
- Develop data collection plan
 - -Choose reliable, proven, and easily maintained wind equipment
 - -Record hourly, wind speed, direction, and turbulence (optional temperature—I recommend temperature)

Data Analysis

- For a minimum analysis, evaluate:
 - Monthly average wind speed
 - Annual wind speed frequency distribution
 - Inter-annual variations, if possible
 - Energy production estimates (including losses)
- For a more comprehensive analysis, also include:
 - Joint speed and direction frequency distribution
 - Wind shear
 - Diurnal variations
 - Turbulence intensity

Data Analysis

- After 4-6 months of monitoring, evaluate sites for continuation, relocation, or termination by comparing to long-term reference sites (if available)
- Continue monitoring program 12-24 months and select most appropriate sites for long-term reference purposes
- Evaluate data and proceed to site-specific evaluations, if warranted

Data Processing and Quality Control

- Process the data at least monthly
- Identify irregularities in data (unreasonable values of speed or direction)
- Compare to nearby sites for agreement and continuity
- Implement corrective action promptly

Data Quality Checking

- Identify events that may affect data quality
- Identify periods of missing data
- Identify data anomalies (through validations tests)
- Remove erroneous data values and document changes
- Maintain a log of data collected and the results of quality checking

Lessons Learned

- Anemometers should be located where they represent conditions to be experienced by turbines
- High quality data essential to accurate resource assessment
 - High quality equipment
 - Trained personnel—don't site anemometer next to tree
 - Frequent data quality checking—detect freezing
 - Thorough data analysis
- There is no substitute for long-term (one year or more) on-site data

